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Introduction Gantner

« Key factor for future PV uptake is the reduction of the Levelized
Cost of Electricity (LCoE)

« This can be achieved by increasing lifetime performance and
reducing operation and maintenance (O&M) costs

Example:

100 MWp plant
(CapEx) @ | LCOE of 0.08 €/kWh
Energy yield I 160,000 MWh/yr (M€ 12.8/yr)

| (icoEe/Mwh)

5 % performance improvement
(availability and proactive O&M) equivalent to
more income.

~0.64 M€/year

20/09/2019




Data-driven approaches tor PV & Gantner
Energy monitoring ~

Predictive

« Change from current Descriptive to novel Diagnostic/Predictive Analytics
Analytics. W
=
« Algorithms can operate for any application (Electrical and E
mechanical parameters, failures). g
©
2 /
Descriptive Intelligent monitoring systems
Analytics
IS Complexity
§ What Why it What will
& happened? happened? happen?
5
E Today with IPERMON with ANALYTICS Project
wn

Benefits:
Reduced LCOE

Outcome:
Full performance visibility

Increased Return on Investment (ROI)
Risk reduction

Quality control
Automated process
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Utility Scale Example Gantner.

« Ben Ban, Egypt; Monitoring and grid control

 Project size: 230 MW, 1-axis tracking
« 1400 Combiner boxes, 60 x 2.5 MW Inverters, 24 Irradiance sensors/weather stations
« DCside: 30,000 String currents, 1,400 voltages

« Parameters:
« 70,000 measured

« 140,000 Normalized and calculated parameters

- E.g.PR per component, Aggregation of |, V for each level, limit checks, warning for
degradation, temperature limits, ...

« Each parameter has different aggregation methods per time interval (Average, Min, Max,
Standard deviation) for direct Loss Factor Model use
« Raw data volume:
* 400GB peryear
« 8TBfor 20 years

How to store and process very large datasets cost efficiently?
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Results & Methodology Gantner

instruments
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Performance Gantner

Performance Ratio loss stages instruments

I—OSS Stages NN 100%

LPACT I Module rating]

 Performance losses and LOEC e Degradation|

LPoA I Tilted plane
LSHAD [  shading
LSNOW [ snow cover

LsoiL I, soiling

LAol I Angle of incidence
LSPECT - [ spectral response

LSEAS [ seasonal annealing
the PV system LTHERM [ ] PV thermal loss

LDCC [ DC constant loss

L.LLEC _ PV low light

LMSM ] Module mismatch
LDCI2R I pC wiring

L.WAKE _ Inverter wakeup

L.MPPT I MPP tracking

LIEFF I Inverter efficiency

LACC [ Constant AC loss

LCUP i inverter clipping
Key m Et h (o) d . LTEFF [ Transformer efficiency
|dentification and accurate LTSS NN Transformer tare
quantiﬂcation LACIZR [ AC wiring
of losses and failures 75 80 85 % o 100 105
in PV systems .

failures can occur during the
operational lifetime of PV
systems

 Suchlosses and failures
decrease the output power of
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Robust performance monitoring Gantner.

Reliable Data collection (weather, inverters, grid, ...)

Synchronized data acquisition

Data reduction & filtering on the edge

Real time calculation: Aggregation -
from PV Module up to site level
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Data quality routines (DORs) Gantner.

« Identification of repetitive data and duplicates [

« l|dentification of missing or erroneous data, outliers and

« [gnore missing data

» Correction of data through data imputation
(Linear interpolation, Kalman filtering, etc.)
Correction with parametric/non-parametric model

outages, Sensor drifts Data quality routine
«  Correction of erroneous/missing data through data imputation 7
techniques Identification of « Check timestamp measurements against
duplicates [ |known timestamp series
» Check for repetitive data and duplicates
Y
Identification of missing | _|e Identify missing data by searching for NA
" or erroneous data values into the dataset.
$ 2 | 0.020 « |dentify erroneous data by setting threshold
: ] o ranges.
[ o o= =
g‘ _| E I] 0.051 o |dentify erroneous data with a comparative
- o I] 0.061 mean 30 method
oo g o ) « Identify erroneous data comparative to
E o @ ” 0.071 empirical models
‘C — g |:| 0121 » Detection through statistics (histogram, box
c ()] plots, local/global outlier factors)
L]
o = _| = 0.152
b= o 0 I:I
o o Y
g' 7] = D 0.202 . o Filter nighttime data-sets
5 = Data filtering (e.g. irradiance < 5 W/m?)
= | Time filter — Sunrise < Time < Sunset
% g :‘E E % g *5 E « Sun elevation/azimuth angle
= o = = = [=] = —
s = 3 e & 3 :
§ ° 8 8§ © 8

Handling Out-of-Range or|__|
Missing Data




Capacity Test

« Power performance Index (PPI) for commissioning of PV system
according to IEC61724-2

Automated process with notifications when test was completed

« Different methods used:
« ASTM Regression Method
« |[EC61724 method

« Mechanistic performance model (MPM)
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Failure detection & verification Gantner

Power irradiance diagnostic plot

Detailed verification and bench marking of failure detection and - Measured « Predicted
classification events at test-bench systems at the University of 1000+
e )
Cyprus and actual power plants administered by Gl oo - “F#J',,.-B'
= P,
. p <
Detect faults 5 so0f o £ A\
« Diagnose the problems % 250 .';uF’ 5 Fault conditions
: . i e?” N
«  Comparative to thresholds, ratio 0 ! e e et ittt
250 500 750 1000

; 2
« Outlier detection rules Irradiance (W /m®)

Sigma rule limit method

== Lower limit == Measured = Predicted —— Upper limit




Real Time Health state detector Gantner

instruments

Health-state detector to quantify the performance on a daily basis of ~ Lower limit == Measured == Predicted == Upperimil
PV power plants against a digital twin accurate performance replica
(mechanistic performance model). The monitor can detect and
classify commonly exhibited failures with over 98 % accuracy.

4 Outliers f,

System health state detector:

« Comparative assessment between measured and predicted daily
PV performance

« (lassification of the relative error in ranked categories

& CradeA: RE < 10 % 00
- GradeB:10% < RE < 20 % 25001
¢ GradeC:20% < RE <30 %
¢ GradeD:30% <RE<40% &
= (GradeE:40% < RE <50 % 5004
:  (GradeF: RE >10 % v e oo & &

Health State

Frequenc




Degradation Rate analysis. Gantner

instruments

oA,
o NN \/m*»

Comparison of different methods with 8 years of long term data from

OTFs :
E
@ 801
Q
C . . . a) Fitted model: -0.046 x + 95.3
Statistical and comparative techniques for trend extraction s % % 52 2 %
Months (M)
« Ordinary Least Squares (OLS) 5000

« (lassical Seasonal Decomposition (CSD) A0

3000 1

Count

*  Year-on-Year (YOY)

20001

«  Seasonal Trend decomposition (STL) 10001 )

. Autoregressive Integrated Moving Average (ARIMA) o o w1

Performance Ratio (%)
0.100

«  Estimation of the annual degradation rate (YOY)

0.075+

0.050+

Density

0.0251

0.000 T T -
70 80 90 100
Performance Ratio (%)
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Development of Prediction models Gantner
(mechanistic and Machine learning based)

Important steps

« Use different types of data source (locations, concept)

« Select different models (empirical, machine learning, ...)
« Trainand optimize

« Benchmark & conclude



Experimental Setup tor Model training (PV arrays, PV Gantner
Module IV scans), Location: Arizona/Us, Cyprus, others

Gantner's PV Outdoor Test Facility in Arizona has 30 individual PV Module testing channels GI OTF MEASUREMENTS
Name | Description Units
« Fixed and 2D track; IV curve every minute, all environmental, spectral parameters Gy Giobal Fdrizonral Imadisnes IVIrE
D Diffuse Horizontal Irradiance kW/m?
Bn Beam Normal Irradiance kW/m?
« PV Module Power up to 500wW/800 W Gi Global Inclined Irradiance | kW/m?
(Pyranometers and c-Si ref cells)
' . o . . Tams Ambient Temperature C
 High quality digitalization, accuracy 0.1 % FS (current), 0.05 % FS (voltage) G ok gfp'*é'ggwe Temperatures &
WD Wind Direction e
« Scalable system (4 .. 48 channels; raw data access RH | Relative Humidity %
G(A) Spectral Irradiance G(350— 1050nm) W/m?nm

Derived parameters using Loss Factors and Mechanistic Performance Models. Local or cloud-
based data streaming
Integrated Python Jupyter Lab for direct analysis and automatic reporting

Continuous measurements in Arizona since 2010; other sites available around the world

ﬁ — Trusted by leading PV

Gantner

. OUTDOOR TEST FACILITY USA . ’“ & - MOdUIE manUfacturerS,

| 111°54'W ’«l.T T

k= ~--. _J Technology providers and
le%j orlen\tatl N Research Labs




instruments

Machine Learning Gantner

Different Algorithms

« Machine Learning Algorithms: Artificial Neural Networks (ANN), Decision Trees (DT), Support Vector
Machines (SVM).

« Many machine intelligence developers prefer neural networks because of their high accuracy and fast
operation. However, this is problem dependent.

A
v 0 G
h:“ T IEEESEES: S 5
o it
peis D3 5= wf Iln"f Cy "5 x5

AL A ‘“S"b c//

Tme sil Mar Lep

N VS ////

Sphe fagio Support Vectors

Ophio \ / Welum
\ // Y. , S R :
\\ 1/ BV

Lycopodlel T
Mom Lign [

Lcoo
s \ W

Lye

Mo\T:'r . Margi
H i Width xz
ANN DT SVM
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Methodology tfor Model training Gantner

instruments

Experimental setup - Data Data quality routines (DQRS) Train, test and improve
acquisition system (DAQ) - - Datafiltering (G; > 0.1 kW /m?) ‘ the model

. Test-bench PV system in Cyprus + Identify missing/erroneous values «  Train model

« Test-bench PV module in Arizona «  Correction/Imputation of data « Evaluate performance

N
S R

|:> Train set
Yearly

dataset —

Performance metrics

Model training 7oy
Error (%) = 100 - +—

N
100 -

MAPE (%) = TZ BETEE

i=1

Produce
model

|:> Test model

LN

Determine accuracy

Test Set

—>|  (30%)

.~

Day
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Data driven improvement Gantner
Benchmarking different Machine Learning Algorithms

Mechanistic Performance Model (MPM) Machine Learning

MECHANISTIC PERFORMANCE MODEL “MPM” - Feed forward

with 6 physical and normalised coefficients ci /Artificial Neural
Tamb
s Networks (ANN)
PRpc = s log. () . . e 3 ais « Decision Trees (DT)
c, +C T +C o G +C,*G, +C.*WS +C. /G AzS
1 2 MOD 3 F10\G1 4 I 5 6 I i . Supplort Vector
] ) ) Walpha Machines (SVM)
Quality LogGi Windspeed
Gamma Gi 1/Gi
Meaningful normalised
Typical power plant values MPM coefficients

C_1 C_2 C_3 C_4 C_5 C_6 RMS

5tn_1 -0.69%| -0.004% 5.8% -0.65% -1.28% [ D.97%
ACCB_1.01 0.43%  -0.004% 11%  -032% -118% [ 1.18% 7
Inv_1.01.03 0.39%  -0.004% 04% -0.28% -115% 0 118% s

- 7, A/{,rll!l :.ll\\' \\\\\\\\
Inv_1.01.03.1 0.33% -0.004%| -05% -0.13%| -1aexl 120 sl

‘, s AL/} \
TN

Quality Cl1 ~ 100% s ST
Other coefficents are small corrections ~<2% LY
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Model fit robustness:
Machine learning (FFNN) vs. MPM

Random 70:30 % - GI OTF

Correlation Coefficient
0 02 Good predictive quality using
o both instantaneous and

average measurements

ML - Lower SD, RMSE error and

higher R

0 19 38 57 76
Standard Deviation
Centered RMS Difference

Gantner

instruments

Random 70:30 % - UCY OTF

Correlation Coefficient

0 0.2

0 22
Standard Deviation
Centered RMS Difference

18



Model benchmarking Gantner
Train subset duration

instruments

Train subsets of 10, 30 and 70 % of the entire dataset

GI OTF - Arizona, USA fissed UCY OTF - Nicosia, Cyprus

4 = 4
- FFNN - FFMN
KPR
PR
N 30% 70% . 30% 70%
1 1 14
U o
10:30 30:30 70:30 0-

10:30 30:30 70:30
Train - Test set partition (%)

Train - Test set partition (%)

ML
More accurate when using larger train subsets

08.10.2020 www.gantner-instruments.com 19 18



Data driven improvement Gantner
Benchmarking different Machine Learning Algorithms

Mechanistic Performance Model (MPM) Machine Learning
F

MECHANISTIC PERFORMANCE MODEL “MPM” _ « Feed forward
with 6 physical and normalised coefficients Z /Artificial Neural
Networks (ANN)
« Decision Trees (DT)
« Support Vector
Machines (SVM)

PRy =
C, +C,*dT,,, +C *1log;,(G;) +C,*G; +C.*WS +C,/G; (3)

Quality LogGi Windspeed

Gamma Gi 1/Gi .{
I I s aneet 10
trainset 70 % trainset 10 %
Artificial Neural Network (ANN) 1.04 2.23 11.74
MPM (physical) 163 2.79 @

Parametric (physical) 2.44 4.11 6.72

Regressive Tree (RT) 1.55 2.82 4,53

Support Vector Regression (SVR) 1.32 2.73 21.56
Accuracy of 2.5 % achieved at 30MW power plant level
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Platform for data storage, processing and analytics Gantner

instruments
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Real time data
visualization

« From controller to cloud
platform

« (Create our own dashboards
(read only, read/write)

 Display Real time charts
(different controllers, merged
data streams)

« Cockpit: see device location,
status, warnings, meta data

« Efficient storage of full life
cycle data streams, e.g. 30
years of device data

« Store and visualize triggered
data and different sampling
intervals ®

N
jupyter
o
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« Analytics powered by
JupyterLab

Group by: Continent

Sort by: Site Name

® OK ® Offine & Waming @ Error

4
*1

Géteborg [
«8°Cl@72ms
Continent: Europe

Application: Gantner
Status: OK Instruments Nordic
Devices: 1 More
Nirnberg a
>6°C| ©57mis
Continent: Europe
Status: Warming  Application: Glems
Devices: 1 More
Paris ®
—=11°C| ©26mis
Continent: Europe

Application: Demo
Status: OK France
Devices: 1 More
Zérate [ ]

14°C| @21 mis

Continent: South America

Application: al

Gantner

instruments

> Géteborg

Details Devices

Q statlon 101 ®
mber: 750722

Last Restart: 2019-03-26
OK

FW Version: V1.12 B08
2019-02-18

Ahannai

nnnnnnnn

Users

Tabl OTF4 OTF4_MID12 OTF4_MID11 PV_50MW xTest  OTF4_CMSLive  OTF4_ACC OTF4_CMS Live2 Glems Tal

) Timestam1 >
700 20.10.2
600 Pyranometer CMP22 Gi (avg
500 - 288.13
400 W’L

ol
300 v* f fﬂ‘y "T [ m’)
,m Ty Mm My W wm il ;
100 \ 4
o
10092010 12052011 10012012 10092012 12052013  100L2014 11092014 13052015 11012016 1109206 13052017 110012018 12091 E
« | 20072010 1202201 0w [ > [P |k O] @ Timestar
50 \ 16.06.
f W ‘,l I L A N i ‘ ) PT100 ambient tl(av‘
il RN R
I T by i ) ‘\ f II¥
) r“\ A ) 4 tEl ! 1 L % ,’ \ ! PT100 Modul Iepcsnoan(av
’[1 | 4 u | \N I "** 1l i f " 27.5¢
| ) ! , i ! i J . I
) f '
f ' j ‘
012011 26.09.2011 29.05.2012 30.01.2013 0310.2013 06.06.2014 06.02.2015 10.10.2015 12.06.2016 13.02.2017 17102017 ZGllF
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Determining performance stability PRy by time of day and month ~ Gantner

instruments

Average PRdc by hour of day 1...24 HODA and Year Month 1401...1612 MOY=>»

(0)2 z=PRdc__Mod__ 15 agg=np.average y=HOD x=YYMM HEATMAP_OTF_zParam_xYYMM_yHOD

@15t Summer 1406 Module

performance although poor

was highest during the day

N06 19
® it was worse at lower

irradiance ~0.2 16
©® > 2 years later 1606 this

module has degraded badly

and is below 0.45 .

Degradation rates can be 10
obtained by the fall per year

from @ to ® e.g. 0.6 t0 0.45 O
Note longer summer days give
“taller” datasets 06:00 to 4
19:00

Stable performance would be reqular each year

S S = e S A
I I = I £ 2

=1507
1510
1601
1604
1607
1610
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Integration of diagnostic plus predictive analytics Gantner
Machine learning with Project IPERMON

Failure diagnosis \
== Lower limit == Measured == Predicted == Upper limit

; *§ Outliers §~

Gl.cloud backend: IPERMON

v Gantner

. instruments S &
N N N
Q & & P
I~ S n
[ ard party Analytics, ML | Time

Health state detectors

. cloud backend (Dgcker Swarm) 70
+ 3rd party
mpc | Fugins Gl.cloud Ul 60 . 4
Mg / (live, historical data) 0 Abnormal operation area Normal operation area
3
9
O30
[ GLAPIV1.0 (REST) (to hot/cold data) ] 20
10
|.service e
0

Ei 10 20 30 40 50 60 70 80 90 100 110
Performance Ratio (%)

y Stream processing, Hot data (Crate)
cold data (Kafka)
. y = resolution: 1m, 1h,

* data stream: event 1d, .. [tbd]
based, continuous

ML, Mechanistic Performance Model

Project “IPERMON", joint project between University of Cyprus and Gantner Instruments B e A A T
for predictive analytics based on scalable platform.

08.10.2020 www.gantner-instruments.com
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Gantner

instruments

Example of empirical model (MPM) In platform

# Home & Dashboard & |ssues & Documents ¥ Map € Configuration

Southampton - 25.03.2017

Mormalization

Southampton

04 L4 nPac-Inv-1.01.

01.03

Filter:| - v # Show environment # Shared tooltips Hide the night
@ Overview
= < 25.03.2017 > 25.03.2017 = March 2017 = 2007 - Resolution:| 1min| 15min = 1hour 1day
F Analysis
1500 70
[l Charts =
50
- Combiner Boxes 1000
- Installation = E
z
500
- Inverter o
- LO_Site 0 -20
25. Mar 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 26. Mar
- L2_Station
— Ci_T-GiPyr-Site W/mZ] — Tmod-Tmod-Site [C] — Tamb-Tamb-Site ['C]
- L3_ACCB
1.4 N3
®  L4_Inverter 25. Mar 02:40 —]
& nPac-lnv-1.0101.03[]: 0
01_L4 Pac-lmv-1.01.01 50 # nPac_Calc_Fit-Inv-1.01.01.03 [0: ©
- . nPac_Calc_Diff-lnv-1.01.01.03 []. O
02_L4 Eac-lnv-1.01.01.xx
02_L4 Edc-Inv-1.01.01 xx L ¥ f ISy
p— Wl U .1, v 1 [u] =
1 i *h. | A |
03_L4 PRac-Inv-1.01.01.xx M r
0.5 w
1
04_L4 nPac-Inw-1.01.01.03 q -0.1
- LS_Mpptracker
\‘\-\.
- Lb_String o -0z
25. Mar 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 26. Mar
- Maintenance Gl
~ nPac-Inv-1.01.01.03 1 - nPac_Calc_Fit-Inv-1.01.01.03 ] nPac_Calc_Diff-Inv-1.01.01.03 []
- (thers
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Machine
Learning

« Example with connection to
Gl.cloud via API

« Executing Machine learning
model with R, Jupyter, ...

« Serviceruns on Gantner
Instruments data backend

10/8/2020 www.gantner-instruments.com

) RStudio
File Edit Code View Plots Session Build Debug Profile Tools Help
Q- H B =2 |55 ~ Addins -
| IPERMOM APIGOL_25062019.R % (] IPERMON_RESTAPIGQL_SOMWPVPLA... * | Pusystemdata » | @] IPERMON APUSON.R % 33 == ]
= &1 | 3 [sourceonsave | [Q /#° -| & =#%Run | |[%% || #Source ~| =
Pdc Mext || Prev || AN Replzce || Al
Dln selection DMatch case DWhalewcrd Dﬂegax Wrap
o —craprree
311 # plot x-y "
312 plotla <- ggplot(Metrics_testset_BRNN_df, aes(x=ActualPac, y=Predictedrac)) +
313 geom_point (color="grey40", size-1) +
314 xlab("Actual Power (W)") +
315 ylab("pPredicted Power (W)") +
316 scale_x_continuous (expand = c(0, 0), Timits = c(0,1400), breaks=seq(0, 1400, 200)) +
317 scale_y_continuous (expand = c(0, 0), 1imits = c(0,1400), breaks=seq(0, 1400, 200)) +
318 theme(legend. title=element_blank(), legend.position=c(.9,.75)) +
319 geom_smooth(method=1m, se=F) +
320 theme(axis. text=element_text{(size=12)) +
321 theme_bw ()
322
323
324
325 grid.arrange(plotla, plotlb, plot3c, plot3d, plot3e, nrow = 5) W
326 <« >
325:63 | E3 Run queries R Script +
Console C:/Users/eep5mg1/Deskiop/IPERMONAPI/SOMWPVPlant/ =
> nrmse_percentage <- 100 * rmse(actual,predicted_brnn) / (Pstc) -
warning message:
In actual - predicted
longer object length is not a multiple of shorter object Tlength
= Nrmse_percentage
[1] Na
> plotla <- ggplot(Metrics_testset_BRNN_df, aes(x=ActualPac, y=PredictedPac)) +
+ geom_point(color="grey40", size=1) +
+ xlab("Actual Power (W)") +
+ ylab("Predicted Power (W)") +
+ scale_x_continuous (expand = c¢(0, 0), Timits = c(0,1400), breaks=seq(0, 1400, 200)) +
+ scale_y_continuous(expand = c(0, 0), Timits = c(0,1400), breaks=seq(0, 1400, 200)) +
+ theme(legend.title=element_blank(), legend.position=c(.9,.75)) +
+ geom_smooth(method=1m, se=F) +
+  theme(axis.text=element_text(size=12)) +
4 thama hw(Y v

Environment = History

A Import Dataset = 4 List =
= &3 &

7} Global Environment ~

Mwplant_ts_guery
OMwplant_ts_quer..
MwpTlant_ws_guery
OMwplant_ws_quer..
nrmse_percentage
password
predicted_brnn
Pstc
query_sources_r...
@ response

Files Plots Packages

& Zoom | E|Export - 9 §/

Gantner

instruments
— x

i3 Project: ([None] -

=0

"{\nanalytics(from: 1367296000, to: 154254418 *
List of 1

"{\nanalytics(from: 1527184186888, to: 154254.
List of 1

Na_real_

"admin!?ism"

num [1:90] -4859 -4859 -4859 -4859 -4859 ...
1350

"/kafka/structure/sources"”

List of 10

Help  Viewer -]

43, Publish - | (&

actual[1.200]
3e+08
|

Oe+00
1

50 100 150 200

Index
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Conclusion & summary Gantner

instruments
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Conclusion Model selection Gantner

instruments

Mechanistic Performance Model

« Simple implementation (low complexity)

Higher complexity for implementation

« 3inputs parameter to get PR_dc output
(+/-2.5%)

4-5 inputs parameter, output

More accurate at low and medium irradiance
« More accurate at high irradiance conditions conditions

« Robust model at low availability duration Higher training data partitions yield more
datasets accurate predictions

No direct usable coefficients

B1 N B2
Tmod! 1 . H1 \
Gl H2 \
\ o .

PRpc = Cy+ Cy X dTyop + Cz X Log1o(Gy) + Cys X Gy + Cs X w(@ 7
™ =

« Useful, meaningful coefficients (C1-C5)

derance Te e coef! Lorw HIGHE “Wige, Byypony High Eght Ry, Wind

AzS| 14

08.10.2020 www.gantner-instruments.com 28




Summary Project IPERMON Gantner

instruments

« Monitoring systems improve the LCoE of PV, Project IPERMON created helpful routines and algorithms for Data quality routines,
practical use quidelines

« Diagnostic data analytic functionalities (next to descriptive) make sure that optimal levels of PV performance
can be maintained

Failure diagnosis

Capacity Test for

« O&M contractors are enabled to take preventive and corrective actions to minimize power losses immediately i s

« Machine learning is one of the most important enables for Energy asset performance optimization

. . , , _ System health state
 Gantner Instruments data platform offers the Integration of data analytic algorithms and machine learning

models for customer so they can utilize this competitive advantage for their asset services Predictive models

OUthOk Performance loss

quantification

Future work will involve integration of new data analytic algorithms for: .
Degradation rate
 Full asset digitalization estimation
« Predictive maintenance
« Operation at higher resolution time series (10Hz, 100Hz, ...)

« Interoperability

10/8/2020 www.gantner-instruments.com 29




Gantner

instruments

Turn Data Into

“Without data Information

youre just Turn Information
another person Into Customer
with an opinion.” [ECEUSILS

W. Edwards Deming,

Data Scientist Thank yOU Ve I"y
much!

j.sutterlueti@gantner-instruments.com
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Appendix Gantner
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About Gantner
Instruments

Gantner Instruments is a
global leader in the
development

of high precision
measurement and control
systems.

Founded in 1982, the
company excels in
delivering products

and services in the fields of
electrical, mechanical and
thermal measurement,
always prioritizing
flexibility,

usability, and accessibility.
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Substantial demand for high
performance edge computingina
growing market

Drivers:;

« Industry 4.0, big data, Al, ML all need high quality data sources

« More distributed and adaptive monitoring and control applications
« Requires better and faster utilization of data streams

« Flexible data architecture to meet customer needs

08.10.2020 www.gantner-instruments.com

Gantner

instruments

Oc mm O

Technology and market designers understand the need
for powerful cloud and edge computing in combination
with adaptable high resolution measurement down to
micro-seconds (ps).
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Analytic Snapshot based on Gl.cloud data backend Gantner

instruments

« How to find faults automatically

08.10.2020 www.gantner-instruments.com 36



How to compare PV Performance for many different components over tifwa

Performance ratio (colours red=best blue=worst ) for 156 invertersA and

time=>
PR = Pmeas/Pnom/G

@High performance ratio
(near 100%) is light
green to yellow

®Etarly morning <08:00
there may be some
problems of shading or
turn on (blue)

©® Some inverters that are
worse in the morning are
better in the
afternoon>15:00 - it's
likely that these arrays
are facing westwards
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Comparing standard deviation of similar components - use to find faults Gaq&gg{s
StdDev of PR (colours blue=worst black=best) for 6x26 invertersA and
time=>»

@Uniform performance PRac Stdx v 1 02 26 x
has low stdev (black)

(W) z=power plantPRac_Std_x_Inv agg=np.average y=chans x=dt HEATMAP_PP_zChanns_xDt

PRac Std x_Inv_ 1 02 24 «x

@®Higher stdev morning ettt
from the inverters PRac Std x_tv_1_02_20_x a
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faCI ng PRac_Std_x__Inv__1__ 02__ 16 x

o PRac Std x_Inv_ 1 02

®Higher stdev from &
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day

=]
a0

PRac Std x |

=]
e

02

Gi_T__GiPyr__Site

=1 =1 =1 =1 =1 o =] = = =] =1 =1
o o 2 2 2 2 2 2 2 o <2 2
[Xy] [Xy] Xyl L L [Ty] L Lo Lo [Xy] L [Xy]
n n n n n n L n 0 n ok 0
w [ [+ @ =] — o 2] - [¥s] ©w [
(=] = =] (=] — - — - — -— -— -—
I~ - I~ [ [ [ [ [ [ I~ I~ I~
o o o o o o o o o o o o
(=] =] [=}] [=}] [=}] [=}] [=}] =] =] (=] (=] [=7]
< < < < < < < < < < < <
23] w w [s] [s] [os] [s] [os] [os] 23] o] [is]
— — — — — — — — — — — —
=1 =1 o =1 o= =1 =1 =1 =1 =1 =] o
] ] ] o~ o~ ] o~ o~ o~ ] [ ]
datetime

08.10.2020 www.gantner-instruments.com




How to compare Inverter Efficiency for many different components over@Gaatner

instruments

Inverter Efficiency (colours red=best blue=worst ) for 156 invertersq and

time=>

' (W) z=power plant  InvEff__Inv agg=np.average y=chans x=dt HEATMAP_PP_zChanns_xDt
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Determining performance stability PRy by time of day and month Gantner
Average PRdc by hour of day 1...24 HODA and Year Month 1401...1612 MOY=>

@15t Summer 1406 Module
performance although poor
was highest during the day
~0.6

® it was worse at lower
irradiance ~0.2

©® > 2 years later 1606 this
module has degraded badly
and is below 0.45

Degradation rates can be
obtained by the fall per year
from @ to ® e.g. 0.6 t0 0.45

Note longer summer days give
“taller” datasets 06:00 to
19:00
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(0)2 z=PRdc__Mod__ 15 agg=np.average y=HOD x=YYMM HEATMAP_OTF_zParam_xYYMM_yHOD

05

Stable performance would be reqular each year

S S = e S A
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Determining performance stability PRy by irradiance and month

Gantner

instruments

Average PRy by Irradiance O ... 1200W/m¢ GA and YearMonth 1401...1612 MOY=>»

@Initially Module performance
was quite good PR~0.7 at
high irradiance 1000W/mZ2

® and worse PR~0.3 at lower
irradiance 200W/m?Z2

© > 2 years later this module
has degraded badly

Degradation rates can be
obtained by the fall per year
from@®to ©

Low light performance LLEC
canbegotfrom®/ @
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Predictive Model: MPM Section Gantner

instruments

10/8/2020 www.gantner-instruments.com 42



. use the Mechanistic Performance Model (MPM) Gantner

e ...tofit measured PR vs. Irradiance and Tmodule

« look for discrepancies or poor fit coefficients

instruments

PRDC — C1 + CZ X dTMOD + C3 X Loglo(Gl) + C4_ X Gl + C5 X WS

MPM Coefficients are meaningful, orthogonal, robust and normalis 1.

Usual approx. | Coefficient e
Range Dependency
C, 80%1t0100% ' onormance
olerance
-0.2% to -

- Ta 0]
s 0.50%/K (Tmod-25)C Temperature Coefficient %/K
Low light fall (~Voc,

Actual/Nominal

€, 0Oto20% l0g,0(G) Rshunt) %
C, -20% 1to0% G, High light fall (~Rseries) %
%/(ms-

Lo . 72%10.2% mdspeed Windspeed correction

0 “www.gantner- mstruments com

1)

— 5C
- ]0C

25C
—— 40C
— 55C
— 70C

08.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Gi (kW/m2)

Fitted lines to measured PRy for c-
Simodule at GI OTF in AZ with good

agreement
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. use the Mechanistic Performance Model (MPM) Gantner

instruments

e ...tofit measured PR vs. Irradiance and Tmodule

« look for discrepancies or poor fit coefficients

PRDC — C1 + CZ X dTMOD + C3 X Loglo(Gl) + C4_ X Gl + C5 X WS

MPM Coefficients are meaningful, orthogonal, robust and normalised

IR
Range Dependency

C, 80% to100% Performance Actual/Nominal
Tolerance

[y
N

[y

o
o

Irradiance (kW/m?)

Empirical Coefficient, PRdc
=}
[+)]

-0.2% to - C 0.4
s 0.50%/K (Tmod-25)C Temperature Coefficient %/K ., Gantner,
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0 0
C; 0to20% l0g,0(G) Rshunt) Y0 z: B ™ v o v oe 5= 02 00 T 11 ﬁ
C4 _200/0 t0 OO/O GI ngh ||ght fa” (NRserieS) 0/0 Const mmdTmod msLn(Gi) m=Gi mEWS mm1/Gi =EO mEO «=PRdc
%/(ms-

Lo . 72%10.2% Windspeed Windspeed correction
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